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INTRODUCTION

It is the purpose of this paper to discuss the concept of local sharp
maximal functions, to compute the E and K functionals for the couple
A= (LP(R n

), BMO(Rn
)), 0 ~ p ~ 00, and .to provide an insight into the

theory of various kinds of integral operators, such as Calder6n-Zygmund
singular integrals, by means of pointwise inequalities involving such sharp
maximal functions. The proofs we present here are conceptually different
from those in the literature for they rely on the maximal function Mt~

introduced by JohI). [21] and rediscovered by Stromberg [37]. .
A word about the five chapters that comprise the paper. Chapter 1 con

tains the preliminary material, including the definitions of the space LO(Rn)
and of the approximation functional E. In Chapter 2 we prove the "basic
inequality," i.e., roughly speaking the principle which allows us to control
the oscillation of a function f in a cube Q by means of the (local) sharp
maximal function Mt.~;Qf The quantitative formulation of this principle is
given by an estimate in the spirit of the original statement of the John
Nirenberg inequality, namely,

I{x€ Q: If(x) - mf(Q)1 > t, Mt.~;Qf(x) ~ pt}1

~ C t e - c21P II f - mf(Q)II fp,q(Q/t P,
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where mAQ) is a median value of f over Q, CI, C2 are absolute constants
and 0 ~ p < 00, 0 < q ~ 00. Chapter 3 contains the explicit computation of
the K (and also the E when p = 0) functional for the couple A = (Lp,q(R n

),

BMO(Rn)), 0 < p < 00, 0 < q ~ 00. In particular we show that

K(t,f; LI.oo(Rn), BMO(Rn))i::! sup s(MtJ)*(s). (1)
0<S<1

There is an underlying principle implicit in this statement, to wit, a known
expression involving L oo(Rn) will remain valid when we put BMO(Rn) in
its place provided we replacef* by (MtJ)*. As for (1) we have in mind
the expression

K(t,f;LI,oo(Rn),LOO(Rn))i::! sup sf*(s).
0<5<1

In Chapter 4 we show that the subadditive operators which map L oo(Rn)
into BMO(Rn) and L I(Rn) into L l,oo(Rn) continuously, are precisely those
mappings T for which

where Mf denotes the Hardy-Littlewood maximal function of f The con
trol in probability, actually an E-functional inequality expressed by this
estimate, can be improved to the pointwise inequality

Mta. Tf(x) ~ C Mf(x)

for a wide class of operator, including some pseudodifferential operators of
order zero. Coifman and Meyer [8] have observed that estimates such as
M# Tf(x) ~ C Mf(x) cannot hold when T = Hilbert transform on R I

. These
estimates are important because they imply the continuity of the operators
in weighted LP spaces as well as provide vector-valued inequalities. We
conclude by restating in Chapter 5 the results of Garnett and Jones [13]
concerning the distance in BMO(Rn) to L oo(Rn) to show that for the pair
A = (L oo(Rn), BMO(Rn)) we have

K(t, f; A)i::! II Mte-,f II 00' t >0.

h M-#· . f M#were O.a. IS a vanant 0 O,a.·
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1. THE K AND E FUNCTIONALS
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We begin by recalling the definitions of the spaces we consider. The
Lebesgue spaces LP(R"), 0 < p < 00, are as usual the (equivalence class of)
complex-valued, Lebesgue measurable functions f on R" such that

( )

IW

Ilfll p= t If(xW dx < 00.

In the limiting cases p = 00 and p = 0 we require that

Ilflloo = ess sup If(x)1 < 00

and

Ilfllo=f dx< 00,
U".O)

respectively.
The Lorentz spaces Lp,q(R"), 0 < p ~ 00, 0 < q~ 00, are those

measurable functions f on R" such that

and

(
qfoo dt)llqIlfll = - (t1IPf*(tW - < 00

P.q pot '

II f II P,OO = sup t1IPf*(t) < 00,

Ilflloo,oo = Ilflloo < 00,

O<p, q< 00,

O<p<oo

respectively. As is customary we have denoted withf*(t) the nonincreasing
rearrangement of f More precisely, if we let 1$1 denote the Lebesgue
measure of a measurable set $ in R", and we set

m(j, A.) = I{x E R": If(x)1 > A. }I,
then

f*(t) = infP ~ 0: m(j, A.) ~ t},

where inf 0 = 00, At least formally II f II p,q ~ II f II 00 as p tends to 00 and
II f II ~,q ~ II f 110 as p tends to 0 for each fixed q with 0 < q ~ 00, These obser
vations motivate the convenient identifications II f II oo,q = II f II 00 and
Ilfllo,q= Ilfllo for O<q~ 00,

If $ is a Lebesgue measurable set in R" we shall use the notation Lp,q($)
to denote those functions f whose restrictions to $,fXI' belong to Lp,q(R")
and we put Ilfllp,q;.r= II fx.rll p,q'
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For 1~ q ~ p < 00, 11'11 p,q is a norm under which Lp,q(Rn
) forms a

Banach space; for 1< p < q ~ 00 the same quantity is equivalent to a norm
under which the corresponding Lorentz class forms a Banach space. In the
other cases we only obtain metric F spaces: for further details see [28].

By a change of variables we see that

O<p, q< 00, (1.1 )

and we recall that if 1~ q < p or 1 < p < q ~ 00, then

11/11p,q~sup ItJ(X) g(x) dxl,

where the sup is taken over all measurable functions g such that

(1.2)

with lip + lip' = l/q + l/q' = 1.

Finally BMO(Rn) is the John-Nirenberg space of (equivalence classes
modulo constants of) complex-valued, locally summable functions 1 on R n

such that

11/11* = s~p ~~f I~I f
Q

I/(x) - cl dx < 00,

where the inf is taken over all complex numbers c and the sup over all
finite cubes Q in R n with sides parallel to the coordinate axes. An
equivalent formulation is as follows: set

M#I(x) = sup inf IQ
1

1f I/(y) - cl dy
XEQ c Q

and let BMO(Rn) = {f: 11/11* == IIM#/lloo < oo}.
The spaces described above are all examples of normed Abelian groups.

For a couple A = (A o, A d of these, with A o and A 1 continuously embedded
in a Hausdorff topological vector space, Peetre's K-functional is defined by

K(t, a; A) = inf (1laollAo + t IlaJiIAt)
a=ao+ al

for t > 0 and a E A o+ A I' The intermediate interpolation spaces Ao.r are
defined for 0 < () < 1 as those functions a E A o+ A 1 such that

(

00 _ dt)llr
IlaIl Ae.,= fa (t-oK(t, a; A))' t < 00, O<r<oo
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respectively. A closely related concept to that of K-functional is the best
approximation E defined by

E(t, a; A) = inf Iia - alii Ao
IlatllAt '"

for t>O and aEAo+A I .

As a complement to earlier results [29] it was observed in [20] that the
connection between the K and E functionals can be expressed as follows:

LEMMA 1.1. As afunction of t, K(t, a; A)lt is equivalent to the right-con
tinuous inverse of E(t, a; A)lt; more precisely

K(t, a; A)/2t ~ (E(t, a; A)lt) -I ~ K(t, a; A)lt.

Proof Put Koo(t, a; A) =infa=ao+at max(llaoIIAo' t IlalllAJ Clearly
Koo(t, a; A) ~ K(t, a; A) ~ 2Koo (t, a; A). A look at the Gagliardo diagram
F=F(a, .1)= {(Xo,xdER2:a=ao'+a l with lIaollAo~xo and IlatIlAl~xt},
see Fig. 1.1, reveals that Koo(t, a; A)lt is the right-continuous inverse of
E(t, a; A)lt and this proves the lemma.

We also introduce the approximation spaces Ap,q;E as those functions
aEAo+A t such that

and

Iiall Ap,oo;E = sup tE( t, a; A) lip < 00,

O<p, q< 00

O<p< 00,

640(43(3-3

r

(K,,(t);K~(t)/t) = (E(r),r)

FIGURE 1.1
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respectively. From Lemma 1.1 and a change of variables we have that
( - )1/0 - .
AO,r >::;Ap.q;E, I.e.,

Iiall i:, >::; Iiall Ap,q;E'

where p =0/(1- 0) and q =Or.

2. LOCAL MAXIMAL FUNCTIONS

(1.3)

Of the many ways to measure the oscillation of a function the one we
study here in some detail is that provided by a maximal operator
introduced by John [21] and Stromberg [37]. As we shall see it has many
advantages, one being that it is a priori defined for arbitrary measurable
functions rather than locally summable, say. So let I be a complex-valued,
Lebesgue measurable function on R n

• For 0 < 0( :~q we put

Mt,J(x)=supinfinf{A~O:l{yEQ: I/(y)-cl >A}I <0( IQI}, (2.1)
XEQ c

where c runs over all complex numbers and Q is an arbitrary finite cube in
Rn with sides parallel to the coordinate axes. This restriction on the cubes
Q is assumed throughout the rest of the paper and is therefore not
explicitly stated any more. Often it is not important to take the inf over c
since there are optimal choices, namely the median values. A median value
mJ(Q) of a real-valued function I over the cube Q is a, possibly nonunique,
real number such that

I{x E Q:f(x) > mf(Q)} I~ IQI/2,

I{XEQ:/(x)<mJ(Q)}I:::; IQI/2.

For 1=11 + if2 complex-valued, we set mJ(Q) = mJt(Q) + im/2(Q),
It is readily seen that

I{YEQ: I/(y)-miQ)1 > 10Mt,J(x)} I<0( IQI (2.2)

for an arbitrary x E Q, and this justifies the above assertion.
From the definition we immediately get that Mt,J(x) is a lower

semicontinuous function of x and that

Mt,,,(f+g)(x) ~ 2(Mt,,,/z/(x) + Mt,"/2 g(x)).

Less trivial properties follow by comparison with another maximal
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operator, Mo,rr.f(x), defined for complex-valued, Lebesgue measurable
functions f on Rn and 0 < IX ~ !, by

Mo,J(x)=supinf{A~O:l{yEQ: If(y)1 >A}I <IX IQI}. (2.3)
XEQ

M o,af is also lower semi-continuous,

Mo,a(f+g)(x) ~ 2(Mo,a/d(x) + M O,a/2 g(x))

and

I{YERn: If(y)j >A}i ~ i{YERn: Mo,J(Y»A}i

~5n I{YERn: If(y)j >A}I/IX. (2.4)

Here the left-hand side inequality is an easy consequence of the identity
{YERn: Mo,J(Y»A} = {YERn: M(Xlfl>t> Y»IX}, where M denotes the
Hardy-Littlewood maximal operator and the right-hand side inequality
follows by a usual covering argument.

If Q is an arbitrary open set in Rn it is possible to define localized ver
sions M!,a;D and MO,a;D of the maximal functions M!,a and Mo,a, respec
tively, by restricting the cubes in (2.1) and (2.3) to subcubes of Q.

We are now ready to present the "basic inequality" which relates the size
of f to that of M!,J

THEOREM 2.1. Let Qo be a fixed cube. Iff is a real-valued, Lebesgue
measurable function defined on Qo, there is a constant c = c(n) such that

I{YE Qo: If(y) -mf(Qo)1 > t, M!'a;QJ(y) ~ Pt/lO} I
~ c(n) IX I{y E Qo: If(y) - mf(Qo)1 > (1 - P) t, M!'a;QJ(y) ~ pt/lO} I

for 0 < IX ~ ! and all 0 < p ~ 1 and t > O.

Proof The proof makes use of the following version of a Whitney-like
decomposition, namely

LEMMA 2.2. Let Qo be a fixed cube and suppose that (!) is an open set
relative to Qo which is strictly contained in Qo. Then there is a sequence
{Qk} k= 1 of cubes such that

if i # j, i, j ~ 1,
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The proof of the lemma only requires simple modifications of the one in
[35, p. 167], and is therefore omitted. In fact it follows that the cubes Qk
can be chosen so that diam Qk = 2 -m diam Qo, for some integer m = m(k),
k~ 1.

We return now to the proof of the theorem. With no loss of generality
we may assume that miQo) = O. Let (!JI be an open set in Qo which con
tains

Oltl = {y E Q: Mt.~;QJ(y) ~ fJt/lO}

and let (!J be another open set containing

Olt = {y E Qo: I f(y)1 > (1 - fJ) t, Mt.~;QJ(Y) ~ fJt/l0}

U {YE Qo: M O,I/4;I9J(y) > (1- fJ) t},

Assume first that we can find such a set (!J strictly contained in Qo and let
{Qd k= I be the decomposition given by Lemma 2.2. The particular nature
of this decomposition implies that each Qk is contained in a cube Qic c Qo
such that

Clearly

and diam Qic ~ 10n '/
2 diam Qk> k ~ 1. (2.5)

f(x) = L (f(x) - Ck)xQk(X) + L CkXQk(X) + f(x) XI9'(x),
k~1 k~1

I{y E Qo: If(y)1 > t, Mt.~;QJ(Y) ~ fJt/l0} I

~ L I{y E Qk: If(y) - ckl > fJt, Mt.~;QJ(Y) ~ fJt/lO} I
k~1

00 00

+ L i{YEQk:lckl>(I-fJ)t}l= L Ak+ L Bk> say.
k~1 k=1 k=1

Each Bk in the second sum vanishes. Indeed, for any Qc (!JI we have, since
f is real-valued, that

Hence
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As for the first sum, from the choice of f!J and (2.5) we see that

L Ak~ L I{YE Qk: If(y) - ckl > pt, Mt,a;QJ(y) ~Pt/l0}1
k;.l k;'l

00

~ ex L IQkl ~ ex(10n 1
/
2r 1f!J1.

k~l

Since f!J::> IJIJ is arbitrary we conclude that

I{y E Qo: If(y)1 > t, Mt,a;QJ(y) ~ pt/l0}1

~ ex(10n 1
/
2 t(1 {YE Qo: If(y)1 > (1- P) t, Mt,a;QJ(y) ~ pt/l0}1

+ I{YE Qo: M O•1/4;(i)J(y) > (1- P) t}l)

~ ex(50n 1
/
2t I{y E Qo: If(y)1 > (1 - P) t, Mt,a;QJ(y) ~ pt/lO} I,

239

according to (2.4) since f!J1 is arbitrarily close, in measure, to 1JIJ1• This com
pletes the proof, with c(n) = (50n 1

/
2t, provided we can find f!J strictly con

tained in Qo. However, if this is,not possible it must be because one of the
sets

{y E Qo: If(y)1 > (1- P) t, Mt,a;QJ(y) ~ pt/lO}

or

is essentially Qo. In any case, from (2.4) it follows that

20- n IQol ~ I{YE f!Jl: If(y)1 > (1- P) t}l.

Since miQo) = 0, by (2.2) we have that

I{y E Qo: If(Y)1 > t, Mt,a;QJ(y) ~Pt/lO}1

~ I{y E Qo: If(y)1 > 10 inf Mt,a;QJ(x)} I~ ex IQol
XEQo

~cx20n I{YEf!Jl: If(y)1 >(l-P) t}l.

As the measure of the set {y E f!Jl: If(y)1 > (1 - P) t} can again be assumed
to be arbitrarily close to that of {yEQo:lf(y)I>(l-P)t,
Mt,a;QJ(y) ~ Pt} our proof is complete.

A theorem in the spirit of the above result with M#f in place of Mt,a;QJ
goes back to Fefferman and Stein [12].

The basic inequality has a number of interesting consequences. We men
tion here only those which play a role in what follows. First we charac-
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terize the spaces obtained by applying Lp,q norms to Mt,,,; starting with the
case p = 0 we have

COROLLARY 2.3. There is an ao =ao(n) such that for 0 < a:::;; ao(n) there
exist constants cj =cia, n), j = 1, 2, so that for each measurable function f
there is a constant cf such that

Proof The right-hand side inequality is clear. Indeed, since for any con
stant c we have Mt,J(y):::;; M o,,,(f- c)(y), from (2.4), it follows that

I{y ERn: Mt,J(y) > t}1 :::;; sn I{YE Rn: If(y) - cl > t}lla.

Thus letting t decrease to 0 we get the desired inequality with C2 = sn/a.
This inequality is true for each c, but of course it is trivial except for a uni
que value.

As for the left-hand side inequality it follows from

LEMMA 2.4. Let 0< a:::;;!. If Qo ~ Qt are two cubes with IQtI:::;; 21Qol,
then

Proof Suppose the desired conclusion does not hold. Then {y E Qo:
If(y) - mf(Qo)1 :::;; 10 infxEQo Mt,J(x)} and {y E Qo: If(y) - mf(Qdl :::;;
10 infxEQo Mt,J(x)} are disjoint sets and by (2.2) it follows that

2a IQol ~a IQtl ~ I{YEQt: If(y)-mf(Qdl > 10 inf Mt,J(x)} I
XEQO

~1{YEQo:lf(y)-mf(Q0)1:::;;10 inf Mt,J(x)}I~(1-a)\Qol,
XEQO

which is a contradiction.

We return to the proof of the corollary. If Mt,J E Lo(Rn), then for Qo
sufficiently large we have that infxEQo Mt,J(x) =0. Let {Qkh",o be an
increasing sequence of cubes with Uk"'O Qk = Rn. By Lemma 2.4 we know
that mAQo) = mf(Qk), k ~ 1. Also the basic inequality applied to each Qk
with 0 < a:::;; 1/2c(n) gives that

I{y E Qk: If(y) - mAQo)1 > t}\

:::;; I{y E Qk: If(y) - mAQo)\ > t, Mt,";QJ(y):::;; {Jt/101}

+ I{y E Qk: Mt,";QJ(y) > {Jt/10}\

:::;;!(Ilf -mf(Qo)llo;Qk + IIMt,Jllo),
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whence the conclusion follows by first letting t tend to 0 so that
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and then letting k tend to infinity.
In Corollary 2.5 we discuss the other end-point case, namely p = 00. We

have the following result due to John and Stromberg.

COROLLARY 2.5. There is an cto = cto(n) such that for 0 < ct ~ cto(n), there
exist constants cj = CAct, n),j = 1, 2, so that for each measurable functionfwe
have

Proof For each fixed cube Q and each t: > 0 there is a constant c' such
that

I~I f
Q

If(y) - c'l dy ~ (1 + t:) i~f I~I f
Q

If(y) - cl dy.

Hence by Chebyshev's inequality we see that

I{YEQ: If(y)-c'l >t}1 ~f Ifly)-c'l dy/t~(1+t:) IQlllfll*/t.
Q

Thus we readily see that

IIMt,J II 00 ~ II f II */ct.

On the other hand for any large N and a fixed cube Q

I(N) =rI{YEQ: If(y)-m~Q)1 >t}1 dt

~ 10 IIMt,Jlloo IQI + IN;; I{YE Q: If(y) -m~Q)1> t}1 dt.
lOIlMo,Jlloo

By taking Pt/l0= IIM#flloo and ct~(Xo(n)= 1/4c(n) in the basic inequality
we see that the last integral can be estimated by I(N)/2. Hence

I(N)/2~20 IIMt,Jlloo IQI,

and by letting N tend to infinity, taking inf over all c and sup over Q we
have

as we wanted to show.
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Finally for the intermediate values of p we have

COROLLARY 2.6. Let 0 < p < 00, 0 < q ~ 00. There is an ~o = ~o(n) such
that for ~ ~ ~o there exist constants cj =ciex, n), j = I, 2, so that for each
measurable function f there is a constant cf such that

CI Ilf -cfilp,q~ IIMt,Jllp,q~c21If-cfllp,q'

Proof The right-hand side inequality is obvious and follows as in the
proof of Corollary 2.3 now with C2 = (snlex)IIP. As for the left-hand side
inequality, to fix ideas we prove the case p = q, the other cases requiring
only trivial modifications using (1.1). Let PQ denote the cube with the
same center as Q and with side length P times that of Q. If Mt,J is in
U(Rn), then

inf
Q

Mt,J(x) ~ IIMt,J II p IQI-Ilp.
XE

Hence by Lemma 2.4 we see that if Qo denotes the unit cube centered at the
origin, then mf(2kQo) converges to a number cf as k tends to infinity and
that

ImA2kQo) - cfl ~20(1- 2 -nlp)-l 2 -knlp IIMt,Jll p.

Set A k=20(1 - 2 - niP) - 1 2- knlp II Mt,J II p' Clearly for each large N

prI{y E 2kQo: If(y) - cfl > t}1 tp- I dt

~pr I{YE2kQo: If(y)-mf(2kQo)1 > t12}1 tP- 1 dt
o

1
2Ak

+p 0 I{YE2kQo: ImA2kQo)- cj l >tI2}1 t
p
- 1 dt.

The second summand in the above sum is less than (2A k )P 12kQoI =
cP II M o# f II p with cp= 40( 1- 2 - nip) - I. As for the first, we can use the

p ,0< p

trivial estimate

I{YE2k Qo: If(y)-mA2kQo)1 >tI2}1

~ I{YE2kQo: If(y)-mA2kQo)1 >tI2, Mt,J(y)~tI40}i

+ I{YE 2kQo: Mt,J(y) > tl40}i,

and the basic inequality with P= ~ and 0( ~ 0(0 = l/c(n) 4P + I. We then see
that
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with c~ =40P + c~ and we obtain the desired conclusion by first letting N
and then k tend to infinity.

Using the ideas in the proof of the basic inequality, it is possible to prove
an extension of John-Nirenberg's lemma.

THEOREM 2.7. Let 0::;;;, p < 00, 0 < q::;;;' 00 and let Qo be a fixed cube.
Then there are constants Cl =ct(a, n) and Cz = cz(a, n) such that

1{y E Qo: I f(y) -miQo)1 > t, Mt,rx;QJ(y)::;;;' Pt} I

::;;;'Ct e - c2lP Ilf -mf(Qo)ll~,q;QjtP,

provided that a::;;;' cto(n) is sufficiently small.

Proof There is no loss of generality in assuming that f is real-valued. In
case P~ t&o, Chebyshev's inequality yields the required estimate. So assume
that 1/(k + 1) < P::;;;' l/k for some integer k ~ 100. The basic inequality in
Theorem 2.1 states that

I = IryE Qo: If(y) -mf(Qo)I'> t, Mt,rx;QJ(y)::;;;' pt/lO} I

::;;;, c(n) ct I{y E Qo: If(y) - mf(Qo)1 > (1 - P) t, Mt,rx;QJ(y)::;;;' Pt/lO} I.

Put l = (1 - P) t, P = P/( 1- P) and note that the right-hand side can then
be estimated by

c(n) ct 1{y E Qo: I f(y) - mf(Qo)1 > (1- P) l Mt,rx;QJ(y)::;;;' PtllO} I·

Since (1 - P) l = (1 - 2P) t and Pl= pt we readily see that

I::;;;, (c(n) ctf IryE Qo: If(y) -miQo)1 > (1- 2p) t, Mt,rx;QJ(y)::;;;' pt/lO} I.

Since 1 - kP ~ 0 we may iterate this procedure j times for any integer j so
that 1 < j::;;;' k obtaining

I::;;;, (c(n) a)J IrYE Qo: If(y) -mj(Qo)1 > (1- jP) t, Mt,rx;QJ(y)::;;;, pt/l0}1.

By Chebyshev's inequality the right-hand side above can be estimated by

Thus choosing j= 1/[P/2], a appropriately small and making the trivial
change from P/I0 to P in I, proves the theorem.

COROLLARY 2.8 (John-Nirenberg lemma). Let Q be a fixed cube and let
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Af(Q)=suPxeQMt,IX;Qf(x). Then there is an ao=ao(n) such that for a::;;ao
there exist constants Ct =ct(a, n), C2 = c2(a, n) so that

Proof If Af(Q) = +00, there is nothing to prove, so we may assume
that AiQ) is finite. By considering the real and imaginary parts of f
separately, we may assume that! is real-valued. Again if t is small,
t::;; AiQ) say, there is nothing to show, so we may assume that t > Af(Q).
In Theorem 2.7, now set fJ = Af(Q)/t, p = 0 and 0 < q anything, and observe
that Mt,IX;Q!(Y)::;;' fJt = Af(Q) for each yE Q and that 11(/- mf(Q)) XQllo::;;
IQI. Therefore

I{y EQ: I!(Y) - mf(Q) > t}1 = I{y EQ: I!(y) - mf(Q)1 > t,Mt,".Q!(Y)::;;' fJt}1

::;; C
t
e- czt/Af{Q) IQI

provided that a is sufficiently small. This is the desired result.

Remark 2.9. The estimate

I{y E Qo: I!(Y) - miQo)1 > t} I ::;;, c(n) a(1 {y E Qo: Mt,,,;Qo!(Y) > fJt/10} I
+ 1{YE Qo: 1!(y)-mf(Qo)1 > (1- fJ) t}l) (2.6)

for 0 < a::;; 1, 0 < fJ < 1, t > 0 and fJt ~ 10 infxe Qo Mt,IX;Qo!(x), is proved in a
similar, yet somewhat simpler way than Theorem 2.1. Nevertheless, the
interested reader can verify that (2.6) suffices to yield Corollaries 2.3, 2.5,
2.6, and 2.8.

Remark 2.10. There is also a version of Theorem 2.7 with the finite
cube Qo replaced by Rn

, cf. Corollary 2.2. The quantity II! - mf(Qo)ll p,q;Qo
is then replaced by II! - cfll p,q or equivalently by IIMt,J II p,q (cr. [38]).

Remark 2.11. We recall first a couple of definitions. We say that a
positive, locally summable function w(x) defined on Rn is a doubling
weight if there is a number d~ n and a constant c such that for each x in
R n and for each r > 0 and t ~ 1 we have that

w(B(x, tr)) =f w(y) dy::;; ctdw(B(x, r)).
{yeRn:lx-YI<;;tr}

It is a well-known fact that many of the results which hold true for
Lebesgue measure remain valid for doubling weights. Here this is the case
under the appropriate circumstances, namely, let

Mt,IX;wf(x) = sup infinf{A ~ 0: w( {y EQ: If(y) - p(y)1 > A}) < aw(Q)},
xeQ p
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where p runs over the polynomials of degree m = m(d). Then basically all
weighted analogues remain valid. Assume that in addition w is an Aoo(Rn)
weight, that is, for every e> 0, there exists D> 0 such that if If is an
arbitrary measurable subset of a cube Q and Ilfl/IQI ~ D, then
w(lf)/w(Q) ~ e. Then in this case there is an (J(' = (J('«(J(, n, w) such that

The consideration of weights also allows us to extend the above results
in a different direction, namely, to the consideration of the vector-valued
analogues. In this setting we have

THEOREM 2.12. Let 0 < p < 00, 0 < q ~ 00, and 0 < r < 00. There is an
(J(o= (J(o(n) such that for (J(~(J(o, there exist constants k l ,k2 (depending on (J(
and n alone) so that to each sequence {jj} j;;' I of measurable functions on Rn

there corresponds a sequence {cj } j;;' I of complex numbers such that

k l II(~ Ijj-cXYlrLq ~ II(~ (Mt,~jjrYlrLq

~k211(~ Ijj-cXYlrLq'

Proof For s > 0 set

(
1 ) lis

MJ(x) = ~~~ TQT f
Q

If(y)IS dy .

Clearly for any constant c and 0 < (J( ~! we have

Now let s < min(p, r). By the vector-valued version of the Hardy
Littlewood maximal theorem due to Fefferman and Stein (11), it follows
that

for arbitrary constants {cj L;;. I' Of course there is only one choice of the
c/s for which the inequality is possibly nontrivial.

To prove the other inequality we use duality. If 1=
II (Lj(Mt,~jjnllrll P.q < 00, then by Corollary 2.6 there are unique constants



246 JAWERTH AND TORCIDNSKY

Cis such that h- cj is in Lp,q(Rn) for each j;;::: 1. This is our choice for the
cis. Now choose t so that

1< rlt, pit < 00, 1 < qlt ~ 00.

Then by (1.2)

II(~ Ih-cXYlr[q ~supL~ Ih(Y)-cX g;(y)dy,

where the sup is taken over all sequences {gJ;;;, 1 with

II ( )
I/(rll)' IIL Ig·l(rll)' ~ 1

j ] (pll)'.(qll)' '" .

Moreover Ig;(Y)1 ~Msg;(y) for each sand Msgj satisfies the Aoo(Rn) con
dition with the e's and o's in the definition independent of} if now s> 1 (see
[9]). Hence by the known weighted results, see Remark 2.11 and [26], we
get

(2.7)

Again by the results of Fefferman and Stein we have that

II ( )
I/(rll)' IIL (M g.)(rll)'

j s ] (pll)',(qll)'

II
( )

I/(rll)' II
~ C L Igjl (rlt)' ~ C

j (pll)',(qll)'

if s < min((rlt)', (pit)'). From this fact and Holder's inequality, (2.7) yields
the desired conclusion at once.

Remark 2.13. Theorem 2.12 also holds for doubling weights if we
replace Mt,rx by Mt,rx;w and the constant cf by a polynomial. This is clear
from the above proof once we observe that Fefferman-Stein's vector-valued
theorem remains true in the weighted case if the Hardy maximal function
M is replaced by its weighted analogue. The appropriate Lorentz spaces
L~,q(Rn) in this case are composed of those functions f such that

0< P < 00, 0 < q < 00
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II I II p,oo;w = sup tw( {y ERn: Il(y)1 > t} )llp < 00,

3. INTERPOLATION RESULTS

O<p< 00.

247

We begin this section by reformulating some of our previous results in
terms of the approximation spaces Ap.q;E and then proceed to compute the
K and E functionals for the Lp,q(Rn) spaces with 0 < p, q:::;; 00 and
BMO(Rn). In fact we treat the case p = 0 for the E functional as well. We
start out by restating Corollary 2.6 as

THEOREM 3.1. Let 0 < p < 00, 0 < q:::;; 00. Then

(L0, L oo)P,q;E-:::; (L 0, BMO)p,q;E-:::;Lp,q(Rn).

Proof A well-known result of Peetre and Sparr [29] states that

E(t, j; L 0, L 00) = I{y ERn: Il(y)1 > t} I= m(j, t). (3.1)

In fact these authors show that E( t, j; L 00, L0) =1*( t), which is equivalent
to our statement since E(t,j;LO, Loo)-l =E(t,j;Loo , L O

) (see the
Gagliardo diagram in Section 1). Hence (LO, L oo)p,q;E-:::;Lp,q(Rn) is just one
of the possible ways of defining the Lorentz spaces, as was done in (29). On
the other hand using the trivial inequality

II I II * :::;; c II I II 00 ,

we readily see that

and

II I II (LO,BMO)p,q;E:::;; C1 II I II (Lo,LOO)p.q;E'

Moreover, modulo constants and provided that IX> 0 is small enough, we
have that

IIMt"Jllo:::;;c 11/110

Therefore we get that

and IIMt,Jlloo:::;; C 11/11*·
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Then Corollary 2.6 gives

II f II p,q ~ c II f II (Lo,BMOlp,q;E

which completes the proof of the Theorem.

Theorem 3.1, in its equivalent formulation with the K-intermediate
spaces, is essentially due to Hanks (15). Next we consider the question
whether the estimate (3.2) is in fact an equivalence, as (3.1) suggests the
case may be, but with L OO(Rn) there replaced with BMO(Rn). That this is
the case is our next result.

THEOREM 3.2, Let 0 < iX < (1000n l
/
2

) -no Then there are constants ci ,

1~ i~ 4, which depend on iX, such that for t > 0,

CI I{YERn:Mt,J(y»c2t}1 ~E(t,f, LO, BMO)

~ C3 I{y ERn: Mt,J(y) > C4 t }I.

Proof. We must only show the right-hand side inequality. We begin by
describing what roughly amounts to be an optimal decomposition for the
given function f in LO(Rn)+ BMO(Rn). Let (9 be the open set of finite
measure defined by (9 = {y ERn: Mt,J(y) > t} and let {Qj} be a (dyadic)
Whitney decomposition of (9. From (2.5) it is clear that with f3 = 10n l

/
2

each cube f3Qj contains some point xj in (9c. With cj = mr(Qj) we set

fo = L (f - c j ) XQj
j

and fl = I. cjXQj + fxl9"
j

Of course f = fo + fl and II folio ~ 1(91. Invoking Corollary 2.3 it will suffice
to prove that

For this purpose let Q be a fixed cube and let J be the collection of those
indices j such that IQ (\ Qjl > O. For C and C constants to be chosen
appropriately, we estimate

IryE Q: Ifl(Y) - cj > Ct}1 = I. IrYE Q (\ Qi Icj - ci > Ct}1

+ I{YEQ(\(9c: If(y)-ci >Ct}I.

We consider three mutually exclusive cases, to wit:

(1) Q c (9c; in this case the first sum above vanishes. Also with the
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choice C = mAQ) we get, using (2.2) and the fact that Mt,J(Y) ~ t for yin
Q, that

I{YEQ: Ifl(y)-ci > lOt}1 <IX IQI < IQI/4;

(2) diam(Q) ~ diam(Qjo)/5 for some jo E J; by the properties of the
Whitney decomposition it is clear that

(i) Qn(!Y=0,

(ii) diam(QJ/10~diam(Qjo)~ 10 diam(Qj),jEJ, and

(iii) UjEJQj ~ lOQjo'

In this case we put C = mf(lOPQjo)' As a consequence of (ii) and (iii), as in
the proof of Lemma 2.2, we get that IC - cjl ~ 20t for all j in J, provided
that IX is sufficiently small. Thus choosing C = 20 because of (i) we see that

I{YE Q: Ifl(Y) - ci > 20t}1 = 0;

(3) diam(Q»diam(Qj)/5 for all j in J; this time we have that
UjEJQj ~ 10Q and that the cube lOPQ contains some point x with
Mt,J(x) ~ t. By the triangle inequality

I{YEQnQi IC-Cjl >20t}1 ~ I{YEQnQi If(y)-ci > 10t}1

+ I{YEQnQi If(y)-cjl > 10t}/,

whence it follows that

I{YEQ: Ifl(y)-cl >20t}/ ~ I{YEQ: If(y)-cl > 10t}1

+ L I{YEQi If(y)-cjl > lOt}l.
jEJ

Now set c = mA lOPQ). Replacing Q and Qj by the larger sets lOPQ and
10PQj, respectively, we get that

I{YEQ: Ifl(y)-cl >20t}1 ~1X(llOPQI + ,L IPQjl)
jEJ

~ 21X 110PQI < IQI/4,

because all the Q/s are disjoint subsets of lOQ and 2a:(10p)n < i.
Altogether the above inequalities show that
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We conclude that

JAWERTH AND TORCHINSKY

which is what we wanted to show.
Combining Theorem 3.2 with general properties of intermediate spaces

the reader can readily obtain several interesting corollaries. We single out
three facts to discuss in detail, the first is the computation of the
K-functionals.

COROLLARY 3.3. Let 0 < p < 00 and 0 < q~ 00. Then for t> 0 and
fE Lp,q(Rn

) + BMO(Rn
), we have that

and

(f 'P ds)l/q
K(t, f; Lp,q, BMO):::::, ° (sl/P(Mt,J)*(sW-;

K(t,f; u,ao, BMO):::::' sup sl/P(Mt,J)*(s),
O<s<t

O<q<oo

provided that 0 < IX ~ IXo = IXo(n) is sufficiently small,

Proof The general principle we will use is essentially the inverse of the
better-known Holmstedt's formula (16) and states that for a pair
A = (A o, A d of normed Abelian groups,

O<q<oo (3.3)

and a similar statement for q = 00, The reader can consult Jawerth's paper
(20), where, however, "our" E-functional is denoted by E. Now according
to Theorem 3.2 we have that

E(s, f; BMO, Lo)= E(s, f; Lo, BMO) -I:::::, (Mt,J)*(s). (3.4)

Thus putting (3.4) in (3.3) yields

(l IP ds)l/q
K(t, f; Lp,q, BMO):::::, ° (sl/P(Mt,J)*(s))q-; O<q<oo

(and a similar expression for the case q = 00 ) since by Theorem 3.1 Lp,q:::::,
(Lo, BMO)p,q;E' This completes our proof.
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Other characterizations of the K-functiona1 are easily obtained if we use
an improvement of a result by Stromberg [37]. Set

We then have

LEMMA 3.4. Suppose that 0 < p < 00. Then for f in LP(Rn)+ BMO(Rn)
there are constants c1, C2 such that

c,MpMt!.J(x) '!( M: f(x) '!( C2MpMt!.J(x)

provided that 0 < a '!( ao(n) is small enough.

Proof Fix an arbitrary cube Qo containing Xo. According to
Corollary 2.6

C~ol f
QO

If(y)-mr(QW dy )'IP '!(cC~ol f
QO

Mt!.J(y)P dy)'IP

'!( cMpMt!.J(xo),

which readily gives

For the converse, we fix again an arbitrary cube Qo containing X o.
Clearly

Mt!.J(x) '!( Mt!.a;2Qo!(X) + RO.a;2Qo!(X),

where RO.a;NQo is defined as Mt!.a except that the supremum is only taken
over those cubes Q with Q n (2QoY #- 0.

Now

Mt!.a;2Qo!(X) '!( M O,a;2Qo(f - c )(x)

for any constant c, and RO.a;2Qo is basically constant on Qo; more precisely

sup RO,a;2Qo!(X) '!( inf Mt!.a,f(x)
XE Qo XEQo

with a' = a(2/3 t. Hence, by (2.4)

640/43/3-4
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where the last inequality follows from Chebyshev's inequality as in the
proof of Corollary 2.5. This completes the proof of the lemma.

The lemma is a limiting case of the statement that

if 0 < p' < p < 00, which can be proved in a similar way. In particular com
bining the lemma with Corollary 3.3 we get the following result, due to
Bennett and Sharpley [4].

COROLLARY 3.5. Let 0 < p < 00. Then for t > 0 and f in U(Rn)+
BMO(Rn) we have that

K(t, f; U, BMO)';::;t(M: f)*(tP).

Remark 3.6. It is also easy to see that

c 1 I{YEW: MpMt,J(y»c2t}1 ~E(t,f;U, BMO)

~c31{YERn:MpMt,J(Y»C4t}1

again by using Theorem 3.1 and general properties of interpolation spaces
(or by taking inverses in Corollary 3.3). Clearly c t , C2, c3 , C4 depend on IX.

Remark 3.7. It is apparent that the results of this section hold, with
minor changes, in the weighted case as well, provided that the weight w
satisfies a doubling condition. For instance, it may be shown that
E(t,/; LO(w dx), BMO(w)) is, up to equivalence w( {Mt,,,;,,,f> t}) if IX is
small enough (cf. Remark 2.11). This result leads, as we saw at the
beginning of this section, to K( t, f; Lp.q( w), BMO( w)) ';::;
(J[{'(SI/P[W( {Mt,,,;,,I> t})] -l(SW ds/s)l/q, q < 00, and a similar expression
when q = 00.

We close this chapter with an extension of a result of Riviere [30].

THEOREM 3.8. Suppose that T is a subadditive operator which maps
LPo.rO(Rn) into Lqo.sO(Rn) and LPIo'l(Rn) into BMO(Rn) continuously, where
O~PO<PI~OO, O~qo<OO, O<ro, rl , so~oo. Then ifl/p=(l-(J)jpo+
(J/Pl> l/q = (l - (J)/qo,/or 0 < (J < 1, and 0 < r ~ s ~ 00, we have that T maps
LP.r(Rn) into Lq,S(Rn) (modulo constants) continuously and there is a con
stant c which depends only on n and the norm of the operator in the given
spaces such that

IITfl1 q,s ~ c II f II p,r'
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Proof It is readily seen that the assumptions imply (and are in fact
equivalent to)

The details needed now to complete the proof, being immediate, are left for
the interested reader to provide.

4. INTEGRAL OPERATORS

Riviere's interpolation theorem in the particular case of subadditive
operators mapping continuously L I(R n

) into L l,oo(Rn
), or of weak-type

(1,1), and Loo(Rn
) into BMO(Rn

), or of type (00, *), has from the classical
point of view some of the most important applications. In this context see
also Spanne [32] and Stampacchia [33]. We look therefore more closely
to that situation and give in Propositions 4.1 and 4.3 two characterizations
of such operators. We then consider, more in detail, integral operators T
with a structure that, roughly speaking, makes them look more like the
Hardy-Littlewood maximal function. For these operators we are able to
derive pointwise estimates involving maximal functions in the spirit of the
ones obtained by Cordoba and Fefferman [9] but preserving the weak
type information. We close the chapter with applications of these results to
weighted and vector-valued inequalities.

Let us then begin by considering a subadditive operator T such that

(4.1 )

Of course (4.1) implies that for f in L I(R n
) + L oo(Rn

) and all t > 0

K(t, Tf; L 1.00, BMO) ~ cK(t,f; L \ L 00). (4.2)

(4.3)

However, by Theorem 3, K(t, Tf; L1,00, BMO)~supo<s< 1s(MtrxTf)*(s),
provided that a is small enough, and it is well kno~n that
K(t,f;LI,Loo)=f~f*(s)ds.Hence we may rewrite (4.2) as

sup s(Mt,rxTf)*(s) ~ crf*(s) ds.
O<S<I 0

By letting t tend to 00, we observe that (4.3) implies that Tis of weak-type
(1, 1), modulo constants, and by first setting s = t in the left-hand side,
dividing by t and then letting t tend to 0, Eq. (4.3) also gives that T is of
type (00, *). Equations (4.1) and (4.3) are thus equivalent. Moreover, since
t(Mf)*(t)~ Jhf*(s) ds, by taking inverses in (4.3), we obtain

640/43/3-4 *



254 JAWERTH AND TORCHINSKY

PROPOSITION 4.1. A subadditive operator T is of weak-type (1, 1) and
maps L OO(Rn) into BMO(Rn) continuously if and only if for every f in
L I(Rn)+ L OO(Rn) and t> 0,

I{YERn: Mt,,, Tf(y) > t}1 ~Cl I{YERn: Mf(y»c2t}1

for some constants Cl> C2 depending on n, (x, T, provided (X ~ (Xo(n) is suf
ficiently small.

Proposition 4.1 is the prototype of statements involving Lorentz spaces,
weighted spaces and other spaces of interest in harmonic analysis. Using
the known K-functionals in the various cases the reader is invited to
provide the statements of the results analogous to Proposition 4.1 in these
settings; the following case which may serve as another illustration of this
principle is also of interest to us.

PROPOSITION 4.2. A subadditive operator T is of weak-type (1, 1) and
maps BMO( Rn) continuously into itself if and only iffor every f in L 1(Rn)+
BMO(Rn) and t >°

I{YERn: Mt,,, Tf(y) > t}1 ~ Cl I{YE Rn: M#f(y) > c2 t }1

for constants cI' C2 depending only on n, (x, T, provided that (X ~ (Xo(n) is suf
ficiently small.

Proof Similar to that of Proposition 4.1.

The second characterization of operators satisfying (4.1) is given by

PROPOSITION 4.3. A subadditive operator T is of weak-type (1, 1) and
maps L OO(Rn) into BMO(Rn) continuously if and only if for every cube Q in
Rn,j in L I(Rn)+L OO(Rn) and t > 0,

I{y E Q: ITf(y) - mTf(Q)I> t} I~ C1e - e2/11I/1100 min( IQI, II f II tit)

for some constants Cl> C2 depending only on nand T.

Proof First suppose that T satisfies (4.1) and that f is essentially boun
ded. Then

I{YEQ: ITf(y)-mTf(Q)1 >t}1

~ I{YE Q: ITf(y) - mTf(Q)1 > t, Mt,,, Tf(y) ~ cIlflloo}1

+ I{YE Q: Mt,,, Tf(y) > c Ilfll OO}!.

The second summand in the right-hand side vanishes if c is sufficiently
large. As for the first summand we apply Theorem 2.7 with f3 = c II f II oo/t
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and p =0 and also p = 1 in case f ELI (Rn
), otherwise the estimate involving

Ilflll is obvious. Iff¢Loo(Rn
) the estimates are equally trivial. This proves

the necessity of the condition.
To show the sufficiency we begin by observing that the statement concer

ning the type (00, *) is immediate. Suppose now that f is integrable and let
{QJ j~ I be a sequence of cubes increasing to Rn

• We claim that
limj _ 00 mn(Qj) = Cn exists. Indeed, let 0 < e< 1 be fixed. It will suffice to
show that there is a sufficiently large index N such that for j, k> N,

(4.4 )

Let j < k. Then

1= I{YEQi ImTr(Qj)-mn(Qdl >e}1

:::; I{YEQj: ITf(y)-mn(Qj)1 >e/2}1

+ I{YEQk: ITf(y)-mn(Qk)1 >e/2}1

:::; 2cI e- cze/Zllflloo II f II tie.

Since I equals either IQjl or zero and IQjl tends to 00 with j, we readily see
that (4.4) holds provided j is large enough. If Q is now so large that
Icn-mTr(Q)1 < t/2, then

I{y E Q: ITf(y) - cnl > t} I :::; I{y E Q: ITf(y) - mTr(Q)1 > t/2} I

(4.5)

As Q is arbitrary, we get that T is of weak-type (1, 1) (modulo constants).
This completes the proof.

Remark 4.4. The estimate (4.5) for T, a singular integral operator, is
due to Riviere.

Proposition 4.3 admits a more localized version, namely

PROPOSITION 4.5. Suppose Sand T are operators such that Mt"Tf(x):::;
cSf(x ),for IX sufficiently small, and S is of weak-type (1, 1). Then 'there is a
constant Cn such that

for constants c l , Cz depending only on n, IX, S, and T.

The proof, which follows at once from Theorem 2,7, is left to the reader.
The formulation of Proposition 4.5 in case of finite cubes Q instead of Rn is
also left to the interested reader.
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To apply Proposition 4.5, it becomes important to determine under what
conditions we can find a weak-type (1, 1) operator S so that

Mt,a Tf(x) ~ cSf(x). (4.6)

We shall see, as a particular case of Example 4.9, that when n = 1 and T =
Hilbert transform, we can choose S = M, the Hardy-Littlewood maximal
function. In this case Proposition 4.5 becomes a recent result of
Muckenhoupt [27], who improved on an earlier result due to Hunt [18].
Hunt used his version of Proposition 4.5 to show that

T{ndf(x) = sup ISnJ(x)l/log log nk < 00,
k

a.e. for all f ELI ([ - n, n)). Here SnJ(x) denotes the nkth partial sum of
the Fourier series offfor the lacunary sequence {nk}' Then by employing a
theorem of Stein [34], the weak-type (1, 1) estimate for T{ndfis obtained.
The application of Proposition 4.5 avoids the use of [34]. Moreover we
can show, by means of an argument similar to the one we shall employ in
the proof of Example 4.9, that in this case we have inequality (4.6) with
T = T{nd and S = M #, the sharp-maximal operator.

Let us consider, then, the possibility of improving the "control in
probability" given by Propositions 4.1 and 4.2 to pointwise estimates such
as (4.6), with S = M or M# such as in the instances described above. To
this end we introduce the following conditions pertaining to kernels k(x, y)
defined on R n x Rn\diagonal,

(A<1» sup sup f f Ik<l(x+u,x+y)-k<l(x+v,x+y)ldudv~<P(y)
x <I lui';: 1 Ivl';: 1

and

(A:r,) supf f Ik<l(u-y)-k<l(v-y)ldudv~<P(y),
o lui';: 1 Ivl';: 1

where as usual ko(x, y) = b -nk(xjb, yjb) and ko(Y) = b -nk(yjb). We then
have

THEOREM 4.6. Let Tf(x) = JRn k(x, y) f( y) dy be an integral operator of
weak-type (1, 1) and suppose that k(x, y) satisfies (A<1»' where for Izi ~ N,
some large value, <P(z) is a radial, nonincreasing, summable function. Then
for IX ~ lXo(n) sufficiently small we have with c = c(IX),

Mt,a Tf(x) ~ cMf(x).
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Proof For convenience we introduce the "centered maximal functions"

- 1 fMf(x) = sup -IQI If(y)1 dy,
XEQ Q

x=center of Q, and similarly for MtJ(x). It is readily seen that Mf(x);::;
Mf(x) and similarly for MtJ(x). '

Let Q be a cube centered' at xo. For a fixed locally summable functionf
we set

Since T is of weak-type (1, 1) we have

I{y E Q: ITfl(y)1 > t}1 ~ I{YE R n
: ITfl(y)1 > t}1

~c Ilfllldt~c In 1
/
2NQI Mf(xo)/t~rJ.IQI/2, (4.7)

provided that t> c'Mf(xo).
As for f2, by Chebychev's inequality we have

I{YEQ: I Tf2(y)-(Tf2)QI >t}1 ~f ITf2(y)-(Tf2)QI dy/t
Q

~I If2(y)1 C~I I
Q
I
Q

Ik(x, y) - k(z, y)1 dx dZ) dy/t. (4.8)

Let us estimate the innermost integrals I. The cube Q is obviously con
tained in a ball with the same center as Q and with radius c:5 = diam Q/2 =
n1

/
2 IQI 1/n/2. Hence, by changing variables we see that

c:5
2n r r

I~-IQI J, J, Ik(c:5u+xo, y)-k(c:5v+xo, y)1 dudv
lui'" 1 Ivl '" 1

c:5
n

=-IQI i f Iko-l(U+Xo/c:5, (Y-XO)/c:5+XO/c:5)
lui'" 1 Ivl '" 1

- ko-l(V + xolc:5, (y - XO)/c:5 + xo/c:5) I du dv.

Thus by (A<f»),

whence the right-hand side of (4.8) is majorized by

(4.9)



258 JAWERTH .....ND TORCHINSKY

which in turn does not exceed

c IQI Mf(x,)!t

since by OUT assumptions SUPhO 1/21* tP~(xo) ~ cMf(xo). Thus

(4.10)

l{yeQ: ITf,(y)-(Tf')QI >t}1 ';;cMf(x,IIQI!t<a IQII2 (4.11)

provided that (> cM!(xo). Since Q is arbitrary we can combine (4.8) and
(4.11) and obtain that for all x in W,

kltl<Tf(x) ~ eMf(x),

which is equivalent to the desired conclusion.

In the same spirit we prove

THEOREM 4.7. Let Tflx) = JR" k(x, y) J(y) dy be an integral operator of
weak-type (I, I) and suppose thai k(x, y) satisfies (A~) where jor 1=1 ~ N,
.p(z) is a radial, nOf/increasing function such that f'ZI'" N fIl(;) Jog Izi dz < 00.
Then for I); ~ \':to(n) sufficiently small we have

Mt.,. Tf(x) ~ eM'"f(x).

Proof ut M"I/(x) denote the centered sharp maximal function and let
Q be a cube centered at Xo_ Since M*'!(x)= M"(j - c)(x) for any constant
c. there is no loss in generality in assuming that 1"lflNQ= (I/ln I/2 NQI)
1"'f2NQ I(y) dy = O. The argument used in the proof of Theorem 4.6 needs
only minor changes once the following variant of Lemma 2.4 of FefTerman
and Stein [12] is invoked.

LEMMA 4.8. For a given cube Q ami a> I,

J=I.2.....

The proof of this lemma, being immediate, is not given here. To continue
with the proof of the theorem we decompose I = 11+12 as in Theorem 4.6.
Since 1"'f2NQ = 0 we may treat Tfl exactly as before. To estimate the term
involving Tf2 we consider, in view of (4.8) and (4.9),

1= f 112(y)1 <Pb(xo- y)dy..;; f f If(Y)1 rJ'l6(XO- y)dy
i-O bJ.,Q\bR

,;; f <I>,(b, IQI'I"/2l f If(y)1 dy,
i"'O bj~jQ
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with t5 = n 1/2 1Q II/nI2 and bj = 2j n 1/2N. This is clearly less than

00

+ c L l/J(2 jN) Ifbj+lQ - fboQI = ell + el2 ,

j=O

259

say. As the integral in each of the summands of I} does not exceed
Ibj+IQI M#f(xo), it follows that

II::; C(f l/J(2 j N)) M#f(xo)::; C (1 l/J(y) dY) M#f(xo)·
j~O lyl>N/2

Moreover, according to Lemma 4.8,

12 ::; C (~o l/J(2 jN) j) M#f(xo)

::; C (1 l/J(y) log Iyl dY) M#f(xo)·
Iyl >N/2

Putting these estimates together we get that

I::; cM#f(xo)

and consequently

provided that t> cM#f(xo). Since Q is arbitrary we conclude that

This is what we wanted to show.

Remark 4.9. It is readily seen that Propositions 4.1 and 4.2 and
Theorems 4.6 and 4.7 remain true if we replace Mt,C1. Tf by M: Tf for
O<p<1.

We discuss now some examples of kernels which satisfy (A:r,), and con
sequently (A<t».

EXAMPLE 4.10. Let k(x) = Q(x)/lxl n be a classical Calderon-Zygmund
kernel with Q(x) a homogeneous function of degree 0 and IE Q(x')
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da(x') = O. We also assume that D is essentially bounded on I and that it
satisfies the Dini condition nw(<5) d<5/<5 < 00, where

w(<5)= sup f f ID(u-y)-D(v-y)ldudv.
Iyl> 1/<5 lui"; I Ivl"; I

For these kernels we have (A:r,) with cP(y)=cw(c/lyl) Iyl-n+ c IIDIIL'''(E)
Iyl - (n + I). Indeed, because of the homogeneity of the kernel it is enough to
consider <5 = l. In that case and for Iyl > 10, we have

f f Ik(u-y)-k(v-y)ldudv
lui"; I Ivi <:; I

~f f ID(u-y)-D;v-y)ldudv
lui <:; I Ivl<:;1 lu- yl

f f I
1 1 I+ IIDII LOO(E) - du dv

lul<:;1 Ivl<:;1 lu-yln Iv_yin

~cw(c//yl) /y/-n+ c IIDIIL'oo(E) ly/-fn+I)=cP(y).

As the singular integral operator Tf(x) = p.v. SRn k(x - y) f(y) dy is of
weak-type (1,1), cf. [6], from Theorem 4.6 it follows that

Mt.~ Tf(x) ~ c Mf(x).

If on the other hand nw(<5) 10g(e/<5) d<5/<5 < 00, by Theorem 4.7, we con
clude that

In the next two examples we assume the condition (A t/,).

EXAMPLE 4.11. Assume that the kernel k(x, y) satisfies the (At/» con
dition with cP radial, nonincreasing, integrable (for large values) and that
Ik(x, y)1 ~ c Ix - yl-n. Let ke(x, y) = k(x, y) when Ix - yl ~ I> and 0
otherwise. If the operator

T*f(x) = ~~~ If ke(x, y) f(y) dy I

is of weak-type (1, 1), then with c=c«('i),

Mt.~T*f(x) ~ c Mf(x).

The proof is immediate. For a fixed cube Q centered at Xo and a given f
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we put I = II +12' with II supported in a multiple of Qand 12 supported in
the complement. For II we see at once that

Mt,,, T*II (xo) ~ cMI(xo).

As for 12 observe that for x E Q,

IT*/2(X)- (T*/2)QI

~~~~ IfQIf (kE(x, y)-kE(z, Y))/2(Y) dy l dzl

~ c ( MI(xo) +f 1/2(y)1 (JQ Ik(x, y) - k(z, y)1 dZ) dY).

By the argument used to bound the similar expression (4.8) it follows that

Mt" T*/2(XO) ~ cMI(xo)

This completes our discussion. The weak-type (1, 1) estimate for T* is
known to hold, for instance, for Calderon-Zygmund operators, cf. [6].

EXAMPLE 4.12. We say that a function p(x, ~) is a classical symbol in
the class S';.8 provided that

la~a~p(x, ~)I ~c{3,y(1 + 1~I)m-pIYI+8IPI

for all multi-indices p, y, and all x, ~ in Rn. Consider the pseudodifferential
operator (t/J, d. 0 )

p(x, D) I(x) =f e21ti(X,Op(x,~) J(~) d~
Rn

defined a priori for Schwartz functions f on Rn
• We will sketch the proof

that the t/J.d.o p(x, D) defines an integral operator with kernel satisfying
the (A",) condition with tP(z) = Izl-(n+s), with E=!, for instance, for Izi
sufficiently large, when p(x, ~) is in the class S?,o, 0 < (j < 1.

For this purpose let r/J be a function supported in {~: 2 - I ~ I~ I~ 2} and
such that L~= _00 r/J(2 - V~) = 1, ~ # O. Let Pv(x, D) denote the t/J .d.o with
symbol Pv(x, ~) = p(x, 0 r/J(2 - YO. We can write

Pv(x, D) f(x) = f kv(x, y) f(y) dy,
Rn
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where the kernel k v is defined by

The estimate we need is given by

LEMMA 4.13. Let p(x, 0 be a symbol of class S'{'b' m > O. For every
a~m we have '

Ikv(x, y)l::::; c Ix- yl-a min(2 Yn
, 2v(n+m-a).

Proof It is left to the reader with the observation that when a is an
integer it follows directly by partial integration and in the general case it
follows from this case at once.

We return to the proof. Since p is a symbol of class S?,b so is Pv, and
moreover from Lemma 4.13 it readily follows that the kernel k v satisfies the
estimate

whenever Ix-zl::::; 1 and Iyl ~ 10. On the other hand for X= (XI"", xn),
andz=(zl,,,,,zn)

where x(s) = Z + s(x - z). We have two different kinds of terms in the above
sum. For the terms involving oPv/OXj we use Lemma 4.13 with m = 15,
a = 2n, and for the terms involving ~j Pv we use it with m = 1, a = n+! to
get that

t -n Ikv(x/t, y/t) - kv(z/t, y/t)1

::::; c{tn Iy _zl- 2n min(rn, 2 -v(l-b)

+ tI/2Iy_zl-(n+ 112) min(2 Vn
, 2v/2 )}. (4.13)

Finally to show that the kernel k of the ljJ.d.o P satisfies the desired (AII'»
estimate we put k = L~ _00 k v and invoke (4.12) for the expressions
involving large v's, namely whenever 2vb ~ 1, and (4.13) for the remaining
v's. The desired conclusion follows upon summing over v. Illner [19] has
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shown that the operators p(x, D) with symbols in S?,o are of weak-type
(1, 1). From Theorem 4.6 we conclude at once that

(4.14)

provided CI. is sufficiently small.

EXAMPLE 4.14. This example is related to results of Aguilera [1]. For
simplicity in the notation, we assume that n = 2. Set

Md(x) = ~~~ I~I t If(y)1 dy,

where {R} is the family of all rectangles with sides parallel to the coor
dinate axes such that the ratio longer side-shorter side = 2k

• Let §' denote
the family of all rectangles centered at the origin with sides parallel to the
coordinate axes and let

TRf(x)=f k(y)f(x-y)dy,
Rn\R

RE§',

where Ik(y)1 ~c IYI-2, k satisfies (A<l» with t/J radial, nonincreasing and
integrable and the operator

Tf(x) = (p.v) f k(y) f(x - y) dy

is of weak-type (1, 1). Then for

T}f(x) = sup ITRf(x)l,
REY

it follows as in [1] that T} is of weak-type (1, 1). We now claim that

00

Mtcx(T}f)(x) ~ c L 2 -kMk!(x).
k~Q

(4.15)

To prove (4.15) fix a cube Q centered at XQ. As in Example 4.11 we
estimate

sup ITRf(x)- TRf(z)l,
REY
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where suppfs;;; (f3QY, f3=n l/2N and x, z are in Q. Let R= {x= (XI, X2):
Ixd~ a, IX21 ~ b} be an arbitrary rectangle with a ~ b, say. Clearly

ITRf(x) - TRf(z)1 ~ c f IXR(X - y) k(x - y) - XR(Z - y) k(z - y)llf(y)1 dy

=cI.

Having fixed X and z the values of y for which the above integral does not
vanish fall into three classes, namely: (i) both XR(X-Y) and XR(Z-y) are
1, (ii) both XR(X - y) and XR(z - y) are 0, and (iii) one of the characteristic
functions is 1 and the other is O. In case (i) we get the bound

I~f Ik(x-y)-k(z-y)llf(y)1 dy

and as in Theorem 4.6 we see that in fact

In case (ii) there is nothing to prove as 1=0. In case (iii) to fix ideas sup
pose that XR(X-y)=1 and XR(Z-y)=O. This means that IXI-YII<a,
IX2 - Y21 < b and in addition one of the following three conditions holds, to
wit: (iiid IZI - YII < a, IZ2 - Y21 > b, (iii2) Iz1-YII > a, IZ2 - Yzi > b, or (iii])
Iz1-YII > a, IZ2 - Yzi < b. Because of our assumptions, since x E Q and
supp fs;;; (f3QY we have that IX2 - Y21::::; IZ2 - Y21. Hence if either (iiid or
(iii 2 ) holds, then IX2-Y21::::;b. Let IO={Y=(YI,Yz):lxI-Y21<b,
IX2-YzI<b} and Ik={Y=(YI,Y2):2k-lb<lxl-YII<2kb,
IX 2 - Yzi < b}, k ~ 1. Then

I~c f f XIJy)max(lxI-YII, IX2-YzI))-2If(Y)1 dy
k~O

~Cb-2(f Xlo(Y) If(y)1 dy+ k~1 2-
2k

tl-YlI<2k+1b,I
X
2-Y2I<b If(y)1 dY)

As case (iii]) can be handled in a similar way our proof is complete.

The main application of the point-wise estimates discussed above is to
weighted inequalities, including the limiting case of weak-type (1, 1), and to
vector-valued inequalities, More specifically we prove
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THEOREM 4.15. Suppose that w is an Aoo(Rn
) weight and that T is an

operator which satisfies

Mt.~ Tf(x) ~ c Mf(x) (4.16)

for (X sufficiently small. Then for each f there is a polynomial q(Tf) (of
appropriate degree according to w, cf Remark 2.11) such that

II Tf - q(Tf) II p.r;w ~ C II Mfll p,r;w

for 1 < p ~ 00, 0 < r ~ 00 or p = 1 and r = 00. Also

Proof That T is of type (00, *) is obvious. Moreover since

Mt.~;w Tf(x) ~ cMt.~ Tf(x)

we also have that

Mt.rx;w Tf(x) ~ c Mf(x)

for (X sufficiently small. Consequently by the weighted version of
Corollary 2.6 it follows that there is q(Tf) such that

IITf - q(Tf)11 p,r;w ~ C IIMt.~;w Tfll p,r;q ~ C IIMfl1 p,r;w'

This completes the proof.

THEOREM 4.16. Suppose that w is an A oo(Rn
) weight and that T is an

operator which satisfies

(4.17)

for (X sufficiently small. Then for each f there is a polynomial q(Tf) (of
appropriate degree according to w) such that

IITf - q(Tf) II p.r;w ~ C IIM#f II p.r;w

for 1 < p ~ 00, 0 < r ~ 00 or p = 1 and r = 00. Also

The proof, being identical to that of Theorem 4.15, is omitted.

Remark 4.17. Some instances of Theorems 4.15 and 4.16 are, of course,
known. The reader may consult Muckenhoupt's survey paper [26] for
further details. In this context, we only mention here that Miller [25] has
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l<p<oo

discussed some weighted inequalities for l/J. d. o's which are covered by
Theorem 4.16. As for the weighted version of Aguilera's result the interested
reader can verify that if w is a weight which satisfies the Ap(Rn

, k) con
dition for all k, i.e., if w satisfies the usual Ap condition over rectangles with
ratio larger side-smaller side = 2\ and if Ck(P) = the Ap(Rn

, k) constant
for w is such that Lf'~ 12 -kCk(p) < 00, then for eachfthere is a polynomial
q( T} f) such that

IIT}f -q(T}f)llp;w~cIlfllp;w,

and if Lf'= 1 2 - kCk(l )(1og 1/2 - kcd 1)) < 00, then

IIT}f -q(T}f)111,00;w~CIlflll;w'

The proof of this remark is obvious and is therefore omitted. We warn
the reader that we did not strive for the best possible result in this case.

Remark 4.18. It is possible to extend Theorems 4.6 and 4.7 to integral
operators T which map L~(Rn) into L~OO(Rn) continuously. A
straightforward condition implying that with C = c(C(),

is given by

s~p W(~)2 f
Q
f

Q
Ik(u, y) - k(v, y)1 w(u) w(v) du dv ~ <P(y),

with <P radial, nonincreasing, and in L~ (large values). Results of this
nature have been discussed by Kurtz and Wheeden [24].

As for the weighted vector-valued estimates we have

THEOREM 4.19. Suppose that w is an A 00 (R n
) weight and that {Tj }J= 1 is

a sequence of operators verifying (4.16) uniformly, Le., with a constant c
independent of j. Then for functions {ij} there is a sequence {qiTjfi)} of
polynomials of appropriate degree, depending on w, such that

for 1< P < 00, 1~ r < 00, 1< S < 00, and
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(5.1 )

Proof The proof follows along the same lines as that of Theorem 4.15
using 2.13 and the weighted vector-valued version of the results of Feffer
man and Stein and is therefore left for the interested reader.

Remark 4.19. Suppose that all the./j's above save one,f, say, are O. We
can then use Muckenhoupt's results and estimate IIMf,II"oo;w by Ilf,II,;w in
(4.19) if (and only if) w is in A ,(Rn

) and use the result of Chung, Hunt, and
Kurtz [IOJ and estimate IIMf,lI p.r;w by II fdlp,r;w in (4.19) if (and only if) w

is in Ap,r(Rn
) = Ap(Rn

). The same result is true in the vector-valued case. A
simple way to see this is to observe that by Holder's inequality Mf(x) ~
eMp;wf(x), where

(
1 ) 'Ip

Mp;wf(x) = ~~~ w(Q) fQ If(yW w(y) dy

if w is in A p , 1~ p < 00. This immediately takes care of the case p = 1 since
the maximal theorem of Fefferman and Stein is true for doubling weights.
Similarly for (4.19) we have only to recall that Ap implies Ap _" P> 1 and
some e> 0, and therefore Mf(x) ~ eMp _ e;w f( x) as well. Another
application of the maximal theorem of Fefferman and Stein establishes the
desired conclusion in this case. These remarks provide a slight extension to
the results of Anderson and John [2].

Remark 4.20. Although we do not pursue the matter here the techni
ques described above can be used to give vector-valued versions for
sequences of operators {TJ verifying, uniformly, estimates such as (4.15)
or (4.17), say. For instance in case (4.17) holds the right-hand side of (4.18)
is replaced by II (L:iM#./jy)'lsllp.r;w and that of (4.19) by
lI(L:j M#./j)')'lsllj,oo;w respectively. Similarly for (4.15).

5. SPACES BETWEEN L 00 AND BMO

We shall use this section to make some remarks pertaining to the couple
if = (L 00, BMO):

Remark 5.1. Garnett and Jones [13] have computed the distance in
BMO to L 00. Recall that the John-Nirenberg inequality,

s~p C~II{XEQ: If(x)- fQI >A}I) ~e-Ale

holds whenever f is in BMO(R n
) and A> Ao(e, f). In fact, e = e II f II * and
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..1.0 = CI e, with c and CI depending only on the dimension n, will do.
Moreover, ifjeLoo(Rn

), then (5.1) obtains for all e>O. Setting

e(f) = inf{ e > 0: (5.1) holds},

Garnett and Jones showed that

dist(j, L (0) = lim E( t,f; A) ';::; e(f).
t~oo

Now for a locally integrable function j and 0 < 0: ~ 1 set

Mt,J(x) = sup inf{A ~O: I{ye Q: Ij(y) - jQI > A}I ~ 0: IQI}.
XEQ

(5.2)

With this notation, a careful application of a John-Nirenberg-type lemma
and the argument of Garnett-Jones, shows that we have the following
sharpening of (5.2):

a result independently obtained by Svante Jansson.
This explicit evaluation of the K-function allows us to complete the

statement of Riviere's interpolation theorem to include the case PI = OCJ as
well. The reader can supply the needed details.

Remark 5.2. Bennett, DeVore, and Sharpley [3] have shown that the
local Hardy maximal operator preserves BMO. An argument in the spirit
of the proof of the basic inequality complemented by Theotem 3.4 shows
that this is a consequence of the inequality

0: sufficiently small.
Consequently the classes AII,r are preserved by the local Hardy maximal

operator as well.

Remark 5.3. Intermediate spaces between L 00 and BMO arise naturally
as the range of mappings such as the potential operator. The Riesz poten
tial operator IJ(x) = Jj(y )/Ix - yl n~ dy, 0 < 0: < 1, maps LP,I(Rn

) into
L oo(Rn

) and LP,oo(Rn
) into BMO(Rn

), P = 1/0:, and by interpolation, LP,P =
U(Rn

) into AII,I/(I _II) with f} = 1- l/p.
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